
215

Chapter 17 C H A P T E R S E V E N T E E N

Memories of TRW’s Software
Productivity Project

A Beautiful Team, Challenged to Change the Culture*

Barry Boehm and Maria H. Penedo

Background on the Software Productivity Project
IN THE EARLY 1980S, I (MARIA) WAS LOOKING FOR A JOB AFTER FINISHING MY DOCTORATE IN com-

puter science at UCLA. I was full of enthusiasm for the field I was in and a little concerned

about the kinds of jobs I would find. I wanted a place where I could follow my passion and

make contributions. I had met Barry at one of the conferences where I presented some of

my research results, and thus went to interview with him at TRW. During the interview,

Barry described the environment around the company and told me about this new project

he was starting whose objective was to revolutionize the way the company developed

software.

Barry told me that he had conducted a software productivity study [1] in the company,

which performed an economic analysis to determine whether a significant level of invest-

ment into software productivity aids would be justified. The factors that led to the analysis

* Editors’ note: if you’ve worked on a software team in the past 20 years, you have been influenced
by Barry Boehm. He was one of the first people to take a systematic approach to estimating and
planning software projects. And many people (including us) believe that his pioneering Spiral
Model is the direct predecessor to the modern idea of iterative development.

,ch17.19320 Page 215 Thursday, February 12, 2009 3:09 PM

216 C H A P T E R S E V E N T E E N

were driven by an overall corporate focus on industry and international competitiveness,

but also included increased demand for software, limited supply of software engineers, ris-

ing software engineer support expectations, and reduced hardware costs—do they all

sound familiar even today? This study led to the project that he wanted me to work on,

the Software Productivity Project (SPP) [2,3]. He told me it would not be easy, since we

would be trying to change the culture. Well, it seemed the perfect challenge for my first job

in industry, so I accepted the offer and went to work on the project, together with a fan-

tastic team of TRW veterans and newbies. We were going to attempt to change the current

ways of developing software by providing a software development support environment

for the aerospace part of the company.

Before it was acquired by Northrop Grumman, TRW was a conglomerate which included a

large auto parts company (Thompson Products in Cleveland) and a large aerospace com-

pany (Ramo-Wooldridge in Los Angeles). It included a number of software-intensive

product lines, including TRW Credit Data, and divisions producing point-of-sale systems,

telecom switches, and industrial process control systems. In the mid-1980s, TRW was

ranked #2 in world software sales in the annual Datamation 100 lists, well behind IBM.

In the 1960s, TRW’s aerospace sector pioneered in going from the code-and-fix approach

to software development to the requirements-driven waterfall model, as described in Win-

ston Royce’s classic 1970 paper [4]. In the 1970s, TRW developed a set of waterfall-ori-

ented software development policies, standards, review procedures, training courses, and

requirements-driven software tools. These were a good match to TRW’s engineering, sci-

ence, and real-time control systems of the time, and the culture became strongly water-

fall-oriented. By the late 1970s, though, TRW’s applications became much more people-

interactive, and the waterfall model didn’t work well with requirements that were emerg-

ing as the project progressed.

At that time, the environment for projects included managers coordinating the people and

activities, secretaries who typed the project’s documents, meetings to plan and produce

the project’s activities and tasks, and system engineers and developers producing the

designs and the systems. Only developers used software development tools and they had

to work in batch processing mode or go to special bays with limited numbers of terminals

for interactive development, using mainframe computers. Well, in the SPP we developed a

new work environment where all members of the project (managers, system engineers,

software developers, secretaries, and controllers) had individual offices with workstations,

and communicated electronically via a local area network (LAN). Its architecture was

based on the Unix operating system and it included commercial off-the-shelf (COTS) and

locally developed tools in support of the full life cycle (e.g., requirements definition, trace-

ability, design and development, forms management, and office automation tools). For

this new project, we had to cope with significant technical and stakeholder-conflict risks,

and with emergent requirements that could not be specified in advance; thus we had a

great opportunity to apply an early version of the risk-driven, concurrently engineered

spiral model developed by Barry [5]. Those changes created culture-clash challenges,

especially for the waterfall-oriented veterans and interactive-oriented newbies on the SPP

,ch17.19320 Page 216 Thursday, February 12, 2009 3:09 PM

M E M O R I E S O F T R W ’ S S O F T W A R E P R O D U C T I V I T Y P R O J E C T 217

itself. We can still recall heated meetings where TRW veterans would say things like, “But

the policies don’t allow you to prototype this early! Prototyping is coding before you have

passed your critical design review!”

The project was very successful (with significant productivity gains—a factor of 2 or more,

depending on reuse), but it was not easy to institutionalize the changes and convince the

personnel. We also learned that productivity gains require an integrated program of initia-

tives in several areas and an ongoing and sustained effort. Even though this project hap-

pened long ago, the stories we tell in this chapter describe points that are still valid today,

in spite of all the advancement in tools and technologies, both in planning and in execut-

ing productivity activities. Changing cultures is difficult, and it is even harder to keep up with the

fast pace of technology in large organizations.

Making the Project a Reality

Getting Started: Being Ready with Options When Management Calls

Scene: Bob Williams’ office, late 1979. Bob is the vice president/general manager of the 2,000-person

Software and Information Systems Division, one of six divisions in the TRW Defense and Space Sys-

tems Group (DSSG). Barry is his chief engineer and advanced technology business area manager.

Bob: I’ve just come back from a DSSG General Managers off-site about improving produc-

tivity. Corporate in Cleveland is making a big push to get the auto parts division to be

more competitive with the Japanese, and wants everybody in TRW to focus on improving

their productivity. It looks like the company will put up money for productivity initiatives

if there’s a good business case for them. I think it’s worth a try. Do you think you can put

something together for us?

Barry: Definitely. This fits with a lot of improvements we’ve talked about but haven’t

found funding for. Our Constructive Cost Estimation Model (COCOMO) provides us with

a good framework for a business case. It shows how much our productivity goes up or

down as we change some of the cost drivers like tool support, turnaround time, reusing

components, and people factors. This last driver would fit with your ideas about multiple

career paths for our people. We could probably use some of our local area network tech-

nology to get everybody interactively working and communicating. And we could proba-

bly get added support from some of the Defense Department’s Ada initiatives. Are they

looking for a full-up proposal?

Bob: Well, if we were proposing to the government, that’s what we would do. But since

this is an internal company initiative, the sponsors want a clearer idea of their options,

before they commit to spend a lot of money. So we have a couple of months to put a

white paper together. Why don’t you do a part-time study with Ray Wolverton and a cou-

ple of the Ada guys and put a draft together? And let’s get everybody involved by doing a

survey of what people think would best help them improve their productivity.

Barry: Great. We’ll get right on it and give you a progress report in a couple of weeks.

,ch17.19320 Page 217 Thursday, February 12, 2009 3:09 PM

218 C H A P T E R S E V E N T E E N

Evaluating and Selecting Options: Applying the Spiral Model

The project’s incremental versus total upfront commitment was the first opportunity to

fully apply the spiral model of software development [4] to incrementally explore options,

refine scope, and obtain higher levels of management and user buy-in at the end of each

spiral cycle. After the first white-paper cycle ended with approval to proceed, the second

cycle of the spiral involved visits to advanced technology centers such as Xerox PARC and

IBM Santa Teresa, LAN and workstation architecture and market analysis, more detailed

manager and developer needs surveys, demos, and prototypes. Three operational concept

options were prepared at expenditure levels of $2K, $10K, and $50K per person, resulting

in selection of the $10K/person alternative, although the Xerox PARC workstations were

tempting.

Scene: Bob Williams’ office, mid-1980.

Bob: Good news! We’ve been selected to develop our proposed Software Productivity Sys-

tem. You guys did a great job in the Round 1 white paper, which got us support to develop

the operational concept options. With the help of the productivity data from IBM and

AT&T’s initiatives, they bought into our $10K-per-person option with the local area net-

work, the lower-cost version of the IBM private offices, the Unix-based support system for

not just programmers but everybody on the project, and the complementary management

and career path initiatives. So we’re funded at $1 million per year to do this, but we’ll

need to pass a review based on a set of prototypes, specifications, and plans, and find an

early-adopter project to work with you on building what they need. I think I can find a

good pilot project. Do you have anything further you need to get started?

Barry: That’s great! I’ll need some help in working with the facilities people on reconfigur-

ing and wiring the private office complex, and on letting the TRW LAN people know that

we’ll have to do a competitive analysis of their product’s maturity and performance. Also,

we’ll need to hire some top technical people with extensive Unix experience. There are a

couple of people at UCLA and UC Santa Barbara that I think will be very interested.

Bob: Fine. You can put together a presentation on this for the next staff meeting, and I’ll

identify people to work with you on those.

Getting Started: A Balanced Team, a Committed Pilot Project, and the
Niceties of Unix

The productivity project was fortunate that its early-adopter partner project was a portion

of a very large real-time application with an open-minded manager and many performers

who, after some resistance, appreciated the ability to have dedicated interactive worksta-

tions and electronic communication. And the Software Productivity Project team had a

good balance of experienced TRW software developers and new-hire Unix environment

experts. The Unix key experts from UCSB (Art Pyster) and UCLA (Maria Penedo) were

very good in coming up with creative and new ideas, engaging the team members, and

showing how Unix capabilities could improve automation, support rapid prototyping/

development for both tools and target software, and shortcut some of the frequent diffi-

,ch17.19320 Page 218 Thursday, February 12, 2009 3:09 PM

M E M O R I E S O F T R W ’ S S O F T W A R E P R O D U C T I V I T Y P R O J E C T 219

culties projects would encounter. The pipe and filter and other features of Unix made it

possible to respond regularly to those kinds of customer requests; we could put together

simple solutions to problems and respond quickly to customer requests because of the

flexibility of the Unix environment.

Scene: An early Unix demo to the partner project people, mid-1981.

Skeptical old-timer: All of that is very interesting, but can it do anything useful for the

project, like create a specialized telephone directory?

Art: Sure. We’ll just do a “grep” on the names in the project roster and the names in the

company phonebook, “pipe” it to a new file...and there it is.

Project Stories

The Team

Yes, we formed a team, a beautiful team, with 20–25 performers. Some were experienced

TRW veterans, but most members of the team were in their 20s (the GEN-Ys of today), a

few fresh out of college including undergraduates, some with master’s and PhD degrees, a

good mix of male and female personnel, a few non-natives (from South America, Asia,

and the Middle East), and a lot of enthusiasm. It did not take a long time for the team to

gel, with many having lunch together most days (do people still do that these days?), oth-

ers even becoming good social friends. And of course, we also had your typical “nerds”

who produced tons and did not like socializing much (we will tell you more about that

later). Keep in mind that most of the members were totally comfortable with the new

technology since they were coming from universities that were pioneers in the Internet

(like UCLA). The target community, however, represented much of the standard company

personnel, used to the “old” ways.

The Challenge

Our challenge was to convince the typical project personnel to adopt a new style of devel-

opment and collaboration as a team and use the new technologies we were bringing. The

SPP was aiming at changing the culture, establishing LANs and bringing all members of

the project to communicate via email and to use automation for the development and

non-development activities. (Remember: that was in the ‘80s… On the other hand, things

haven’t changed; we can observe the same issues with established personnel in large cor-

porations which hesitate at the introduction of the latest technologies like social network-

ing, Wikis, and virtual worlds.) We were matched up with another project that was to use

the new tools/processes that our team generated and we have many interesting stories

about this matchup.

Educating the Boss

We had a wonderful boss, very friendly and open-minded—after all, he took the challenge

to manage this “revolutionary” project. However, he had been in the company for more

,ch17.19320 Page 219 Thursday, February 12, 2009 3:09 PM

220 C H A P T E R S E V E N T E E N

than 20 years and was very accustomed to the culture. We, the young, set out to change

his habits. He was enthusiastic about most of the proposed tools to automate the life-cycle

process, but we noticed that he never used email (none of the managers did at that time).

So one of us played a trick on him; she scheduled a meeting with him and, upon arriving

in his office, she promptly said she was going to teach him how to use email. You should

have seen his face; the look of astonishment. He was used to telling his staff what to do,

not the other way around. To make the story short, he could not refuse, and after learn-

ing, he really became a part of the team by participating in the online discussions and con-

versations, understanding the issues, and sharing the news. By avoiding the change, he

was missing on much of the project chemistry. Sometime later he confessed that he

“couldn’t type” and therefore was embarrassed of showing his shortcoming. But this staff

member and her boss became very good co-workers and friends, as the project progressed

due to his openness to change. Those were key ingredients toward the success of the

project.

Can We Have a Private Office?

The status quo of projects was to have offices for managers and cubicles for project person-

nel; developers used a development bay where a pool of shared computer terminals were

located. Among the “new” ideas being implemented was to give each project person a pri-

vate office independent of his or her status, and access to computers via individually

assigned terminals connected to a LAN. Good ideas. The LAN idea caught on like fire; they

had access to the computers from their offices at any time. Unfortunately, economics

didn’t allow the “individual office for all” idea, not then or now. And we tried; at that time

we knew that when the crunch for spaces hit, that wouldn’t hold. Thus, the proposal was

made to make the individual offices just big enough according to company policies so as

not to allow more than one person. That worked for the project, and folks really enjoyed

their privacy while it lasted. Unfortunately, that was one of the change proposals that did

not get migrated into the rest of the organization; we were not able to prove the value

proposition or to fight the economic pressures.

As a side comment, there was a lot of jealousy from those outside the project because we

had private offices, terminals on our desks, and so on. We had to find ways to not aggra-

vate that jealousy by pointing out that we were the “guinea pigs” for something that

might not work, and that if we were successful, they would eventually get what we had.

Choice in Technologies: The Importance of Trade Studies

The selection of technologies didn’t run that smoothly all the time. And the choice of a

commercial versus in-house bus interface unit for our LAN was an issue. There was an in-

house product that was immature but being pushed by upper management, which is quite

understandable since it was our own product. A careful trade and testing experiment was

carried out, but there was a need for plenty of political outreach to convince management

that there would be less risk if we went the commercial route. Does that sound familiar?

,ch17.19320 Page 220 Thursday, February 12, 2009 3:09 PM

M E M O R I E S O F T R W ’ S S O F T W A R E P R O D U C T I V I T Y P R O J E C T 221

Converting the “Guinea Pig” Project

As we mentioned before, a project was assigned to use the new environment/tools being

developed. The LAN idea was very welcomed, but the operating system (we were intro-

ducing Unix into a DEC VMS-oriented culture) and some of the new tools were not wel-

comed by all. To make it harder, the partner pilot project was using the VMS operating

system, which already came with a few good automated tools. Also, several personnel in

the assigned project complained that Unix on the VAX ran much slower than did the VMS

operating system. That was true, but they missed the fact that that was a development

environment and that overall productivity was improved because the people were the

more valuable resource at that point (they still had the mindset that machine time was

more important than people time). Over the course of the project, some became converts,

some never did.

What was interesting, however, was to observe how sometimes something very small can

have a huge effect on user acceptance. We have two examples to tell, both involving

showing the value added in the new automation. The first one was about a secretary who

typed most of the documents for the project and dealt with quite a few of the project per-

sonnel; many of the documents she typed had many equations for which she had to leave

space to type, even if she used an automated word processor. That was both cumbersome

and slow for her and her customers. Once she found out that Unix had the “eqn” tool

which automated equations, she became a convert and was able to convert many more in

her circle of work, including managers and system engineers, who were by then also being

converted to use word processors. The other example was a savvy administrative assistant/

data manager, who figured out she could automate some of their forms needs using Unix

“scripts” as well as providing configuration management with the new tools; her boss was

so impressed with the results that he mandated all his staff to use the system/tools. She

used her creativity to solve a problem and had an open-minded boss who also dared to

mandate (sometimes that is the only way to get some people to change).

Standardization

Technology adoption has many facets, but we found that, even if the technology is good,

sometimes adoption happens only by standardization or mandate. It happened for this

project after the tools proved themselves, and it still happens today within the organiza-

tion. Examples include standardizing on PCs, using Microsoft products, and other exam-

ples including SharePoint, eRoom, Livelink, and so on. Management made those decisions

and the users just went along with it. On the other hand, where possible, standardizing on

interfaces is better, particularly for custom software houses like TRW that have to deliver

software and support tools that are compatible with different customers’ environments.

Users Should Be Part of the Team

Technology acceptance is easier if users are invested in its success. If they are involved

from the very beginning and participate in the requirements definition, analysis, and

design processes, or if they participate in the review process during its development, they

,ch17.19320 Page 221 Thursday, February 12, 2009 3:09 PM

222 C H A P T E R S E V E N T E E N

will feel ownership and are more likely to defend and less likely to criticize and/or reject

the technology. This was a lesson we learned the hard way. Some team members expected

to spend their time developing state-of-the-art research tools, and were somewhat disap-

pointed when users said they wanted simple (for Unix) things like putting change bars in

the margin to indicate where the next version of a document had been changed. But they

felt a lot better when they saw the positive impact that their amenities had on the project

users.

Making All Inclusive

Every project has its lone wolf, who, for reasons unknown to most of the team, appears to

not want to be part of the team, lacking bedside manners. We had one of those, an

extremely smart and talented person who had no patience for the “normal” people. He

was extremely fast and constantly surprised us with his innovation. We remember that he

got the Forms Management package to speed up performance by a factor of 4 or 5 because

he just dug around into Unix until he found a few obscure interface calls. All that was said

to him was that the package was running too slowly for many. He grumbled about how

they should appreciate what they had, walked away, and came back two days later, all

smiles and with a new version that ran four or five times faster...and we didn’t even

know that he was working on it.

But his aloofness turned out to be very difficult for many. It bothered the team; we

wanted to bring him in, we felt it would really improve team collaboration since he was

one of the most knowledgeable in the group. We don’t know exactly what caused the

change, but one of the members of the team, a smart lady with degrees in both music and

computer science and with great wit, became his friend and broke through his glass shell.

We think after that, he started trusting and actually enjoying some members of the team.

Life in the project became so much better after that. The lesson here is that if people care

and take their time, ways can be found to include everyone.

Training Managers, Not Your Usual Student

The project started a training program about the operating systems and the many tools.

We then noticed that the managers were not coming to the class. Was it lack of time or

hesitancy to show their lack of knowledge of the capabilities? We found out that the latter

was true for many. As risk mitigation, we started separate classes for managers (which

were not that different in content, maybe just a little more high-level) which made them

feel more comfortable being within their peer group; once they were more familiar with

the technology, they were more prone to use, recommend, or mandate it.

Tasting Our Own Cooking

A great lesson learned was to make the SPP use the tools that it was developing. That

wasn’t done at first, which led to the inability to understand some of the users’ needs and

which hurt the acceptance process. Once the project started to use the tools, such as the

requirement traceability capability, a better understanding of the user community

,ch17.19320 Page 222 Thursday, February 12, 2009 3:09 PM

M E M O R I E S O F T R W ’ S S O F T W A R E P R O D U C T I V I T Y P R O J E C T 223

occurred and that led to many improvements to the tools themselves, which then led to

better acceptance.

Is Email a Boost or a Hindrance?

What would we do without email these days? (Actually, the email of yesterday may

equate to the Instant Messenger or social networks of today.) We institutionalized email

across the projects with the new environment. But of course, that brought about issues,

which still apply to date. Email has many benefits: it enables people to communicate or

broadcast messages instantaneously to multiple recipients across a great distance, it allows

one to leave messages when the recipient is not at his or her desk, and so on. However, it

can also incur negative productivity in that, instead of picking up a phone to talk to

another person to solve a problem or to discuss some ideas, one defaults automatically to

writing an email message. That can waste time on both sides, taking longer for resolution

of issues when a short phone call would satisfy. There were many frustrating moments of

people not addressing issues posed in an email because they either didn’t read their email

carefully or they misunderstood the email.

Also, the problem of sending cryptic email can create hurt feelings and misunderstandings.

Due to the non-interactive and non-personal nature of email, the “quality” of communi-

cation often suffers. Misunderstandings develop and sometimes are not clarified or reme-

died until significant cost in time and labor is incurred. A side effect of the SPP

environment occurred when some people stopped stepping out of their private offices to

talk to each other. They sent cryptic email messages rather than popping their head into

their neighbor’s office to ask a question or discuss an issue. That led to some team issues

that had to be solved by an all hands where management encouraged the team to “talk” to

each other rather than defaulting to email as a means of communication.

Also, email is not efficient for assigning action items or important items. One should never

assume that the email was read correctly on the other side, if read at all. And sometimes

over-reliance on email multiplies the inefficiencies—for example, if “Reply All” is used

indiscriminately or accidentally.

Becoming Word Processors

The same negative productivity applied to tools like word processors (e.g., LaTeX and oth-

ers). Whereas being able to type their own documents made this task much faster and

great for maintenance purposes, users complained that they ended up spending too much

time on the aesthetics (getting the formatting just right), rather than the content of the

documents. Because the document generation switched to being prepared by the engi-

neers themselves (except for managers who had secretaries), the cost per hour was ulti-

mately higher and the content suffered because more time was spent on debugging the

document format. Of course, the advent of WYSIWYG word processors solved that prob-

lem; well, almost.

,ch17.19320 Page 223 Thursday, February 12, 2009 3:09 PM

224 C H A P T E R S E V E N T E E N

The Difficulties of Innovation, Timing, and Commercialization

Led by the projects’ needs, a forms management system was created which included many

of the fourth/fifth-generation DBMS capabilities of today; those did not exist at that time.

It was an excellent system which could have been commercialized, had our company been

in the commercial market. That did not happen since we were (and are) a large aerospace

company who works mostly on contracts. Keep in mind, as mentioned before, that the

team had many young, entrepreneurial, and very creative folks who thrived in the envi-

ronment being brought about by this innovative project. As a result of the lack of interest

in commercialization, a few of those folks left the company, some to try new endeavors,

others to work on their own to build tools that could be commercialized.

The Iron Law of Software Maintenance

The Iron Law of Software Maintenance says that for every dollar you put into develop-

ment, you will have to spend $2 to keep the product viable over its life cycle. The Software

Productivity System began as a free service to projects, and it became too hard to switch to

having projects pay for its maintenance. Thus, as time went by, the project had fewer and

fewer resources to add new features. For example, the forms management system was the

world’s best system of its kind in 1982; by 1986, it was still the world’s best 1982 system of

its kind, but had become eclipsed by commercial forms management systems with broader

financial and user bases.

Champions

Throughout this and many other projects, we identified the need for “champions,” that is,

people who will adopt and are passionate about the technology, both on the development

and the user sides. We all know that sometimes passion can move mountains. And many

times, without such champions, the momentum tends to die. However, the life of a

“champion” is not always easy; it depends on the need for the technology, the economics,

and the goals of the management in charge. Champions are at the heart of change; they

need to be nurtured and rewarded.

The Challenges of the Rapid Change of Technology

The reason the project started in the first place was to bring new automated tools into the

organization for the purpose of enhancing software engineering productivity. However,

we found out that the pace of technology changed very rapidly and had to create means to

keep looking toward the future in order to fulfill the goals of the project, to continuously

bring in and deploy new technologies (that was before IT took such central places in

enterprises). It wasn’t (and still isn’t) trivial. In parallel with the program, a future-looking

activity evolved, and from workstations we moved into bitmap displays, computers at the

desktop, and so forth. As this project moved on into other improvement activities, we

found out that in-house technology or tools development within the organization was

generally short-lived and invariably overtaken by commercial products. Each one of the

efforts started with high hopes, made some progress, and caused changes and improve-

,ch17.19320 Page 224 Thursday, February 12, 2009 3:09 PM

M E M O R I E S O F T R W ’ S S O F T W A R E P R O D U C T I V I T Y P R O J E C T 225

ments, but organizations need to be constantly reinventing themselves. Many of those

efforts served an excellent purpose in introducing the concepts into the consciousness of

the user community and in illustrating the need and the benefits of the technologies, but

many of them ultimately lost momentum due to the Iron Law of Software Maintenance

and the relatively small user base across which to amortize changes to the custom in-

house tools. That is the reason why, in today’s world and age, most tools in use come from

the commercial world, and those by themselves carry their own challenges of robustness,

cost, adaptation to user needs, and evolution.

Learning and Assimilating Changing User Behavior

Both the productivity project manager and the pilot user project manager commented on

the ability of electronic communication to flatten traditional management hierarchies. An

example comment was, “On my previous project, I was never sure what was happening

two levels down, and I always felt that I was too late in responding to project problems.

Now that I see a lot of the email traffic, I have more advance warning of problems coming

up and a clearer picture of how each part of the project is doing.” Also, the fact that all of

the artifacts were electronically analyzable meant that we could better identify and fix bot-

tlenecks in such processes as change management and defect closure. A key advantage of

the private offices coupled with passionate people was the ability to achieve the state of

productive flow emphasized in Tom DeMarco and Tim Lister’s Peopleware [6]. As the

project went along, a sort of door code emerged. A closed door meant “I need to concen-

trate,” and an open door meant “Come in and talk.” This led to examples such as the

following:

Scene: The productivity project office suite, 4:00 p.m.

Steve emerges, saying, “I’m hungry. Anyone ready for lunch?”

Sue responds, “Steve, it’s four in the afternoon. You’ve been in there programming all

day.”

Steve: “Well, I guess it’s true that time passes quickly when you’re having fun.”

Conclusion
The productivity project was fortunate to have a number of the features that distinguish

successful from unsuccessful software projects: top management support, capable and

enthusiastic team members, realistic budgets and schedules, concurrent requirements and

solution development, and iterative development. However, many projects have had all of

those factors, but have fallen short of having a beautiful team experience. In comparing the

productivity project with some of these other projects, we would say that some of the key

beautiful team enablers were:

• Identifying and involving all of the success-critical stakeholders

• A lot of work upfront on listening, exploring, and team building

,ch17.19320 Page 225 Thursday, February 12, 2009 3:09 PM

226 C H A P T E R S E V E N T E E N

• Developing a shared vision for the product and its results

• Identifying a manager with an open mind, good hearing, and team building and man-

agement skills

• Encouraging creative ideas from outside and within

• Paying attention and addressing the team’s needs

• Respectfully redeploying incompatible performers

• Negotiating win-win resolutions of stakeholder conflicts

• Carefully monitoring progress and proactively addressing win-lose threats

References
1. Boehm, B., M. H. Penedo, E. D. Stuckle, et al. “A Software Development

Environment for Improving Productivity.” Computer Magazine, May 1984, pp. 30–44.

Also in R. Selby (Ed.), Software Engineering: Barry W. Boehm’s Contributions to Software

Development, Management, and Research, IEEE Computer Society Press/Wiley

Interscience, 2007, pp. 245–268.

2. Bitar, I., M. H. Penedo, and E. D. Stuckle. “Lessons Learned in Building the TRW

Software Productivity System.” Proceedings of Spring CompCon, San Francisco, February

1985.

3. Penedo, M. H., and E. D. Stuckle. “TRW’s SEE Saga.” Proceedings of the International

Workshop on Environments, Chinon, France, in Lecture Notes in Computer Science, No. 467,

Springer-Verlag, September 1989.

4. Royce, W. W. “Managing the Development of Large Software Systems: Concepts and

Techniques.” Proceedings, WESCON, August 1970.

5. Boehm, B. “A Spiral Model of Software Development and Enhancement.” Computer

Magazine, May 1988, pp. 61–72. Also in R. Selby (Ed.), Software Engineering: Barry W.

Boehm’s Contributions to Software Development, Management, and Research, IEEE

Computer Society Press/Wiley Interscience, 2007, pp. 345–365.

6. DeMarco, T., and T. Lister. Peopleware: Productive Projects and Teams, Dorset House,

1987 (2nd Edition, 1999).

Acknowledgments
Our thanks to the contributors and reviewers of this chapter, including Christine Shu,

Frank Belz, Art Pyster, and others who participated and made this a beautiful team. We

would also like to dedicate the chapter to the memory of Don Stuckle, the productivity

project manager and a truly beautiful person.

,ch17.19320 Page 226 Thursday, February 12, 2009 3:09 PM

